Total number of printed pages-7

44 (Sem-4) M-II (HC-4026) N

2022

MATHEMATICS-II

Paper : BCA-HC-4026

$$
\text { Full Marks : } 80
$$

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. (a) For the non-empty sets P, Q, R, prove that $P \cap(Q \Delta R)=(P \cap Q) \Delta(P \cap R)$.
(b) For the non-empty sets $X \& Y$, prove that

$$
n(X \Delta Y)=n(X)+n(Y)-2 n(X \cap Y)
$$

(c) In a class of 40 students, 22 have offered Mathematics, 9 have offered Mathematics but not Computer Science. Now,
(i) how many of them have offered both Mathematics and Computer Science?
(ii) how many students how offered Computer Science ?
(iii) how many students have offered Computer Science but not Mathematics? $2+1+2=5$
(d) Define the term 'equivalence relation'. Let $A=\{1,2,3,4\}$

Consider the following relation $R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$

Examine R is transitive or not.
$2+2=4$
(e) Prove that
$a+a r+a r^{2}+\ldots+a r^{n}=\frac{a r^{n+1}-a}{r-1}$,
if $r \neq 1$
[using mathematical induction]
(f) Let $h: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined by $h(x)=2 x+3$. And, $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined by $g(x)=3 x+2$. Find
(i) $g \circ h$
(ii) $h \circ g$

4
2. (a) Define multigraph and pseudograph. Prove that the number of edges $E(G)$ is atmost $\frac{n(n-1)}{2}$ where G be simple graph with n vertices. $\quad 1+1+3=5$
(b) Define Isomorphism of a graph with suitable example. $2+2=4$
(c) Define rooted tree and decision tree. Prove that a tree with ' n ' vertices there will be ($n-1$) edges. $\quad 2+3=5$
3. (a) In how many ways can the letters of the word EDINBURGH be arranged -
(i) with the vowels only in the odd places
(ii) beginning and ending with vowels.
(iii) beginning and ending with constants. 4
(b) How many diagonals are there in a polyon of ' n ' sides?

3
(c) Find the value of ${ }^{n} C_{r}+{ }^{n} C_{r-1}$. $\quad 1$
(d) There are 12 points on a plane, of which no three are collinear. If the points are joined, then
(i) how many straight lines can be obtained ?
(ii) how many triangles can be formed ?
(e) State Pigeonhole principle.
4. (a) Find the characteristic equation of

$$
\left(\begin{array}{rrr}
2 & 1 & 1 \tag{3}\\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

(b) If $A=\left(\begin{array}{lll}2 & 2 & 2 \\ 0 & 5 & 2 \\ 0 & 0 & 4\end{array}\right)$, find eigenvalues of
(i) A^{-1}
(ii) A^{200}
$2+2=4$
(c) Find the rank of $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]$
5. (a) Construct truth values for : $2+2=4$
(i) $(p \wedge q) \wedge r$
(ii) $p \rightarrow(q \wedge r)$

$$
2+4=6
$$

(b)

Define the term 'Boolean Algebra'. Express the following Boolean expressions E in terms of its minterm canonical form (any two) -
(i) $E=x\left(x y^{\prime}+x^{\prime} y+y^{\prime} z\right)$
(ii) $E=\left(x+y^{\prime} z\right)\left(y+z^{\prime}\right)$
(iii) $E=\left(x^{\prime}+y\right)^{\prime}+y^{\prime} z$
6. (a) Define 'vector space' with suitable example.

$$
2+2=4
$$

(b) What do you mean by subspace and linear combination?
$2+2=4$
(c) Explain the basis and dimension of vector space.

Or

Show that the vectors $(0,2,-4)$, $(1,-2,-1), \quad(1,-4,3)$ are linearly dependent.

